

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

An X-Ray Analysis on Restricted Rotational Isomers of 2-Thioxo-4-oxazolidinone

Z. Aksaç^a; S. Içli^a; C. Krüger^b; C. Y. Tsay^b

^a Department of Chemistry, Middle East Technical University, Ankara, Turkey ^b Max-Planck Institut für Kohlenforschung, Ruhr, Federal Republic of Germany

To cite this Article Aksaç, Z. , Içli, S. , Krüger, C. and Tsay, C. Y.(1983) 'An X-Ray Analysis on Restricted Rotational Isomers of 2-Thioxo-4-oxazolidinone', *Spectroscopy Letters*, 16: 9, 683 — 692

To link to this Article: DOI: 10.1080/00387018308062380

URL: <http://dx.doi.org/10.1080/00387018308062380>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AN X-RAY ANALYSIS ON RESTRICTED ROTATIONAL ISOMERS OF
2-THIOXO-4-OXAZOLIDINONE

Z. Aksaç and S. İçli

Department of Chemistry

Middle East Technical University, Ankara (Turkey)

C. Krüger and C. Y. Tsay

Max-Planck Institut für Kohlenforschung

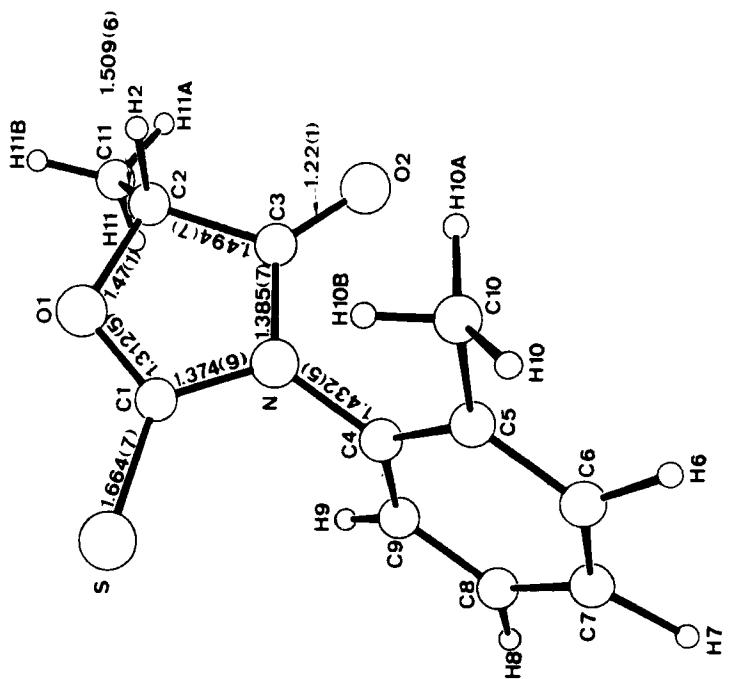
D-4330 Mülheim a.d. Ruhr (Federal Republic of Germany)

ABSTRACT

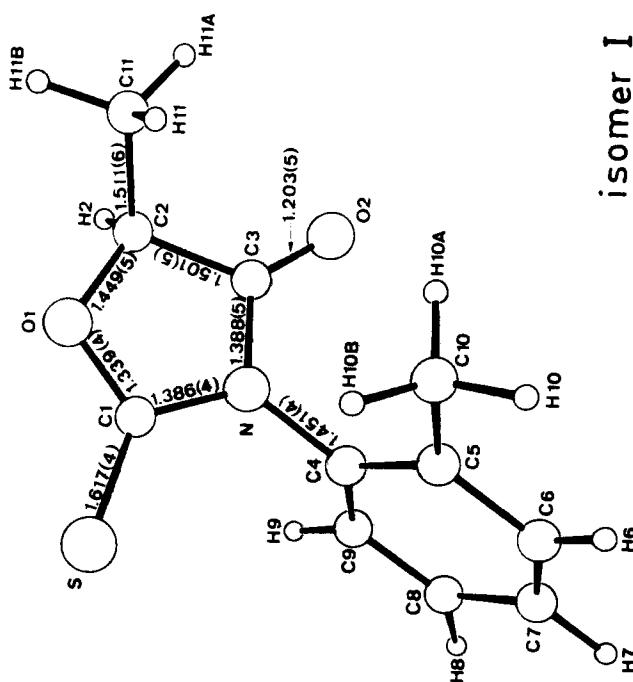
The thermodynamically more stable diastereomeric rotational isomer I, of 3-(o-tolyl)-5-methyl-2-thioxo-4-oxazolidinone, which is first crystallized out in solution, shows that the ortho methyl substituent is cisoid to the methyl group of the hetero ring, and the thermodynamically less stable isomer II, crystallized later, has both methyl groups in transoid conformation, as is found in X-ray studies. The carbonyl and thiocarbonyl bonds are found to be longer in isomer II than in isomer I, which is attributed to the favored conjugation interaction of carbonyl, thiocarbonyl groups with the lone pair electrons of nitrogen,

that may cause the lessened stability of isomer II.

INTRODUCTION


We have reported earlier the detection of isomeric nuclei arising from conformations of aryl substituted oxazolidinediones¹, thioxooxazolidinones², rhodanines² and thiazolidinediones³ at ¹H and ¹³C NMR spectroscopy studies. Steric interactions between the aryl and heterocyclic moieties in these five membered heterocycles are known to produce sufficient restriction to rotation about the aryl C-N bond that the presence of torsional isomers may be detected at magnetic non-equivalence of diastereotopically related nuclei¹⁻³. The free energies of rotation of these compounds have been reported at NMR studies of enantiomeric and diastereomeric rotational isomers. The conformational preferences of the rotational diastereomers in such aryl substituted heterocyclic compounds were evident in the ¹H NMR spectra, on observation of isomeric signals at unequal intensities¹⁻³. In order to relate the conformational preferences to the structures, we have selected the 3-(o-tolyl)-5-methyl-2-thioxo-4-oxazolidinone for X-ray studies. The barrier to internal rotation in this compound was reported to be higher than those of the aryloxazolidinediones and arylthiazolidinediones^{2,3}. The free energy of activation (ΔG^\ddagger) was found to be 24.2 kcal mol⁻¹. This value corresponds nearly to the upper limit of dynamic NMR

studies. Thus the chemical isolation of the isomers were possible.


RESULTS AND DISCUSSION

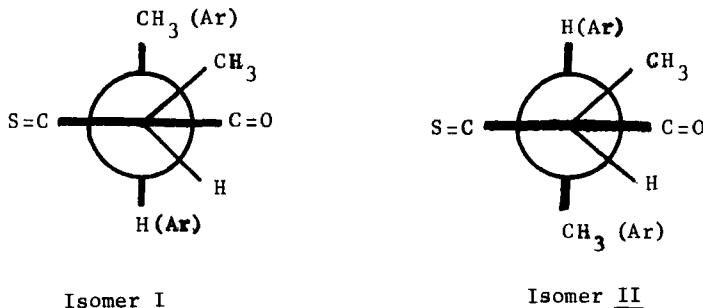
Slow crystallization from p.ether/ether/ligroin, 4/3/2 respectively, solvent mixtures first yielded the thermodynamically more stable isomer I, in 99 % isomeric purity (NMR), than the thermodynamically less stable isomer II, in 99 % purity (NMR). Both isomers were equilibrated to isomeric mixtures in pyridine solutions in about an hour as followed from the diastereotopic signals of the methine proton. The specific rotations of the pure diastereomers were +0.80° and -0.02° for the thermodynamically more and less stable isomer, respectively. The thioxooxazolidinone was synthesized from L(-)-ethyl lactate, thus the differing conformations of isomers can only be attributed to a rotation about aryl C-N bond.

The molecular structures of both of the diastereomers have been established by X-ray crystallography. Isomer I is found to crystallize in the monoclinic system ($a=10.146(1)$ Å, $b=9.524(2)$ Å, $c=11.992(1)$ Å, $\beta=98.938(6)$ Å, Space Group= $p2_1/a$, $Z=4$, $V=1148.35$ Å, $D_c=1.2838$ gcm⁻³, reflections measured 2239, observed reflections 1897, refined parameters 180, $R=0.0748$, $R_w=0.0889$). Isomer II forms orthorhombic crystals (a =

isomer II

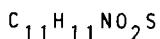
isomer I

Bond distances of Isomer I in Å.


S - C1	1.617(4)	C4 - C5	1.386(4)
C1 - N	1.386(4)	C5 - C6	1.396(5)
C1 - O1	1.339(4)	C6 - C7	1.358(6)
O1 - C2	1.449(5)	C7 - C8	1.382(6)
C2 - C11	1.511(6)	C8 - C9	1.374(6)
C2 - C3	1.501(5)	C9 - C4	1.391(5)
C3 - O2	1.203(5)	C5 - C10	1.486(5)
C3 - N	1.388(5)		
N - C4	1.451(4)		

Bond angles of Isomer I in °.

S - C1 - O1	124.1(2)	C3 - N - C1	111.4(3)
S - C1 - N	127.3(3)	N - C4 - C5	118.7(3)
N - C1 - O1	108.6(3)	C4 - C5 - C10	121.6(3)
C1 - O1 - C2	110.8(3)	C4 - C5 - C6	116.3(3)
O1 - C2 - C3	103.8(3)	C10 - C5 - C6	122.1(3)
C11 - C2 - C3	113.2(3)	C5 - C6 - C7	121.6(3)
C2 - C3 - O2	128.5(4)	C6 - C7 - C8	120.9(4)
C2 - C3 - N	105.3(3)	C7 - C8 - C9	119.8(4)
O2 - C3 - N	126.2(3)	C8 - C9 - C4	118.4(3)
C3 - N - C4	123.4(3)	C9 - C4 - C5	122.9(3)
C1 - N - C4	125.2(3)	C9 - C4 - N	118.3(3)


10.491(2) Å, b=12.201(1) Å, c=8.1288(9) Å, Space Group
 $\text{Pca}2_1$, Z=4, V=1125.767, $D_c = 1.305 \text{ gcm}^{-3}$, reflections
 measured 2245, observed reflections 1466, refined
 parameters 136, $R=0.0515$, $R_w=0.0514$. The absolute
 configuration of II has been established on a 99 %

confidence level.). Figure shows both molecules in similar orientation. From this it is obvious that the molecular geometries of both compounds interconvert by rotation about N-C4 bond. In I as well as in II, atoms O1, Cl, N and C3 are exactly planar. The tetrahedral atom C2 is bent by 0.03 Å out of plane of the remaining heterocyclic fragment. Significant differences in the C-S bond (1.664 Å versus 1.617 Å) may be attributed to intermolecular interactions with neighbouring atoms. Intramolecular interactions cause slight differences in the attachment of the planar (± 0.02 Å) phenyl rings to the heterocycles. Whereas in I the interplanar angle between both rings is found to be 87.2° , it is reduced to 78.2° in II. A contact between one of the hydrogen atoms at C10 and the carbonyl oxygen O2 (2.75 Å), which is also reflected in an elongated C-O bond (1.22 Å in II, as compared 1.203 Å in I) may cause this effect.

The ortho methyl group is cisoid to the C2 methyl group in the thermodynamically more stable isomer I and transoid in the less stable isomer II, as seen on the figure and on above projections. An X-ray study, for only one diastereomer of an aryl hydantoin derivative has shown the similar result⁴. The diastereomer of the hydantoin studied was the thermodynamically less stable one and was reported to crystallize first. The better solubility of thioxooxazolidinone isomer II than isomer I,

Crystallographic data for Isomer I.

Crystal system - monoclinic

Space Group $P2_1/a$

$a = 10.146(1) \text{ \AA}$

$b = 9.524(2)$

$c = 11.992(1)$

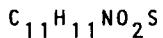
$\beta = 98.938(6)^\circ$

$V = 1144.835 \text{ \AA}^3$

Reflections measured : 2339

Observed Reflections : 1897

Refined Parameters 180


$D_c = 1.2838 \text{ gcm}^{-3}$

$Z = 4$

$\mu = 23.100$

$R = 0.0748$

$R_w = 0.0889$

Crystallographic data for Isomer II.

Crystal System - orthorhombic

Space Group Pca2₁

a = 10.491(2)

b = 13.201(1)

c = 8.1288(9)

V = 1125.767 \AA^3 $D_c = 1.305 \text{ gcm}^{-3}$

Z = 4

 $\mu = 23.489$

Reflections measured : 2245

Observed Reflections : 1466

Refined Parameters : 136

R = 0.0515

 $R_w = 0.0514$

brings ambiguity to the argument that the cisoid conformation is preferred in the thermodynamically more stable isomer because of favored solvation as compared to transoid isomer. The enhanced polar interactions with the solvent are expected in aryl hydantoin diastereomer, where the ortho aryl substituent is bromo, which may cause the change of solubilities of isomers respect to thioxooxazolidinone.

On the other hand, X-ray data of both of the thioxooxazolidinone isomers indicate the evidence to some vary-

Bond distances of Isomer II in Å

S - C1	1.664(7)	N - C4	1.432(5)
C1 - O1	1.312(5)	C4 - C5	1.391(8)
O1 - C2	1.47(1)	C5 - C10	1.514(7)
C2 - C11	1.509(6)	C5 - C6	1.388(7)
C2 - C3	1.494(7)	C6 - C7	1.363(8)
C3 - O2	1.22(1)	C7 - C8	1.392(8)
C3 - N	1.385(7)	C8 - C9	1.363(6)
N - C1	1.374(9)	C9 - C4	1.374(7)

Bond angles of Isomer II in °.

S - C1 - O1	122.6(6)	C1 - N - C4	125.6(5)
S - C1 - N	126.5(3)	N - C4 - C5	119.5(4)
N - C1 - O1	110.9(6)	C4 - C5 - C10	122.4(4)
C1 - O1 - C2	110.2(5)	C4 - C5 - C6	116.9(5)
O1 - C2 - C11	110.6(8)	C10 - C5 - C6	120.7(5)
O1 - C2 - C3	102.5(4)	C5 - C6 - C7	121.7(5)
C11 - C2 - C3	114.0(4)	C6 - C7 - C8	120.0(5)
C2 - C3 - O2	128.3(5)	C7 - C8 - C9	119.7(5)
C2 - C3 - N	106.8(7)	C8 - C9 - C4	119.8(5)
O2 - C3 - N	124.9(4)	C9 - C4 - C5	121.9(4)
C3 - N - C1	109.6(4)	C9 - C4 - N	118.5(4)
C3 - N - C4	124.8(6)		

ing interactions between isomers, that could be related to the relative stabilities of isomers. The lone-pair electrons of nitrogen appear to be conjugated more with the carbonyl and thiocarbonyl groups in transoid isomer II, because the C3-O2 and Cl-S bonds are lengthened significantly, from 1.203 Å to 1.22 Å and from 1.617 Å to 1.664 Å, respectively, in this isomer. Probably the favored interaction of the nitrogen lone pair electrons towards aromatic moiety and the lessened conjugation with the neighbouring carbonyl and thiocarbonyl groups may have caused the better stability of cisoid isomer I.

This work was supported by the Scientific and Technical Research Council of Turkey. We acknowledge the helpful discussions of Dr. O. H. Tarhan and Dr. L. Türker.

REFERENCES

- 1 - S. İçli, Org. Magn. Resonance 12, 178 (1979).
- 2 - Z. Aksaç, E. Pınar and S. İçli, Org. Magn. Resonance (in print).
- 3 - İ. Doğan and S. İçli, Spect. Letters 16(7), (1983).
- 4 - P. H. Bird, L. D. Colebrook, A. R. Fraser and H. G. Giles, J. C. S. Chem. Commun. 225 (1974).

Received: June 21, 1983

Accepted: July 20, 1983